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On transparent potentials: a Born approximation study 

Christiane Coudray 
Division de Physique ThCoriquet, Institut de Physique Nucliaire, F-91406 Orsay Cedex, 
France 
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Abstract. In the frame of the inverse scattering problem at fixed energy, we obtain a class of 
spherically symmetric potentials which are transparent in the Born approximation: all their 
Born phase-shifts vanish. This class consists of oscillating functions of the reduced radial 
variable. Amongst these functions, the Born approximation of the transparent potential of 
the Newton-Sabatier method is found. In the same class, we exhibit potentials for which the 
Born phase-shifts vanish at and after a certain L-wave (quasi-transparent potentials). 

Very general features of potentials transparent in the Born approximation are then 
stated, and bounds are given for the exact scattering amplitudes corresponding to most of 
the potentials previously exhibited. These bounds, obtained at fixed energy and for large 
values of the angular momentum, are found to be independent of the energy. 

1. Introduction 

The problem of the uniqueness of the solution is fundamental in any study of an inverse 
scattering problem. In quantum scattering theory, it is well known that the resolution of 
the inverse problem at a fixed value of the angular momentum leads in general to a set of 
solutions (Gel’fand and Levitan 1951, Agranovich and Marchenko 1963). This set of 
solutions possesses a number of arbitrary parameters equal to the number of bound 
states which the potential admits. However, until now, no similar general result has 
been stated for the inverse problem at fixed energy. Certain special classes of potentials 
have been studied. On one hand, the uniqueness of the solution of an inverse problem 
at fixed energy was shown by Loeffel(l968) for Yukawa and finite-range potentials. On 
the other hand, the Newton-Sabatier method (Newton 1962, Sabatier 1966) is known 
to lead to a one-parameter family of equivalent potentials, amongst which a particular 
potential is chosen for physical reasons. As this last method concerns a limited class of 
functions, the observed lack of uniqueness may be thought to be an accidental one. 

Outside the three quoted classes, a fundamental question remains unsolved: at a 
given energy, is the only knowledge of the phase-shifts corresponding to a potential 
sufficient, or. not, to determine this potential uniquely? This paper does not claim to 
give an answer to this question. However, it allows a realisation of it by studying the 
problem in an approximative frame. This frame is chosen to be the Born approxima- 
tion, for it linearises the phase-shifts as a function of the potential. Then, if all the Born 
phase-shifts of a potential vanish at a given energy, this potential may be added to any 
other potential without modifying in any way its set of Born phase-shifts at the energy 
considered. Such a potential is said to be transparent at this energy, and its addition to a 
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given potential provides another potential equivalent to the first one. In our study, we 
exhibit a class of energy-dependent potentials which are transparent in the Born 
approximation at any energy. In the same class of functions, we obtain quasi- 
transparent potentials, i.e. potentials for which the Born phase-shifts vanish at and after 
a certain L-wave. 

The search for such potentials was suggested to us by numerical tests that we 
performed in order to study carefully the results of the Newton-Sabatier method. So, in 
this paper, we begin in § 2 by a recall of some trials we carried out with the particular 
choice of an initial Gaussian potential. By the explicit computation of equivalent 
potentials, and of potentials generated by prematurely truncated sets of phase-shifts, 
this example shows the oscillating nature of the transparent and quasi-transparent 
potentials which occur in the method. In § 3, we tackle the question of a possible 
expression for a potential which is transparent or quasi-transparent in the Born 
approximation. We look for it inside a relatively wide class of functions of the reduced 
variable: the products of a power of the variable by a certain number of regular Bessel 
functions. One of the transparent potentials that we find of this form is nothing else 
than the Born approximation of the transparent potential of the Newton-Sabatier 
method. This result leads us to think that our potentials may be approximations for 
exact transparent potentials occurring in possible inverse methods at fixed energy. In 
§ 4, use is made of the total Born scattering amplitude to derive very general features of 
potentials transparent in the Born approximation. Then, in order to give a more 
rigorous foundation to our work, we show in § 5 that the exact scattering amplitudes 
corresponding to most of our transparent potentials are bounded for large values of the 
angular momentum by a quantity which goes to zero when 1 goes to infinity. Finally we 
draw our conclusions. 

2. The equivalent potentials of the Newton-Sabatier method 

When the Newton-Sabaticr method (Newton 1962, Sabatier 1966) is studied, the 
notion of equivalent potentials arises in a quite natural way. Let us recall that this 
method allows the construction of spherically symmetric potentials from only the 
knowledge of the set of phase-shifts {Si} at a given energy. Starting from such a set (Si}, a 
one-parameter family of potentials may be generated. The potentials are different from 
each other at lea i t  in the asymptotic region, where they obey the following law (Sabatier 
1966): 

cos(2x -- T/4) 
x 3 / 2  -+ O(x'-2) 

2 
V(x, c y )  -- - i a  - p ,  

x + o n  4, 
when Si goes to zero faster than 1 ' --E as 1 goes to infinity, i.e. for most situations 
occurring in nuclear physics. In equation (I), ,3 is a number which can be computed 
from the initial {Si}, and cy is an arbitrary paraxrrrter. The variable is the reduced 
variable x = kr, r being the physical variable, and k the wavenumber associated with the 
energy. 

Outside the asymptotic region, very little is known from theoretical considerations 
about the different potentials V(x, a ) .  Expanding them near the origin leads to 

2co V(x, a )  - - 
x-to x 
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where co is a number which depends both on the initial set {&} and on the choice of a. 
But, in the intermediate regions, where x is neither too small nor in the asymptotic zone, 
it seems to be difficult to estimate the behaviour of V(x, a )  by theoretical means. 

So, let us consider a physical scattering of two particles of reduced mass p, at a given 
energy ECM=h2k2/2p.  The knowledge of the phase-shifts { S l }  produced by the 
interaction potential V,(r) leads to a family of potentials V(r, a )  = ECMV(kr, a ) .  Each 
of them produces at the energy ECM the same set of phase-shifts as VI (I). At this given 
energy, they are all equivalent to the initial potential, and equivalent to each other. 
However, the relative deviation between them is not theoretically known, and one 
cannot predict if one amongst the different V(r, a )  is closer to Vl(r) than the others. One 
may deduce from equation (2) a divergence of V(r, a )  at the origin (except if co = 0), and 
this behaviour is in most cases different from that of Vl(r). However, it is well known 
that the experimental phase-shifts generally cannot provide information on the inner 
part of the potential; so this characteristic of V(r, a )  does not seem very troublesome 
for eventual practical applications of the inverse method. 

The asymptotic behaviour of V(r, a )  is rather important from this last point of view. 
Equation (1) shows that the decrease of the different potentials generated by the 
method is generally slow. On the other hand, physical reasons usually lead us to 
imagine K ( r )  as a short-ranged potential. In order to harmonise these two facts, 
Sabatier (1966) suggested the choice of the potential V(r, p), which is the only one to 
decrease more rapidly than r-3’2: this particular potential may then be convenient in 
nuclear physics, and reproduce satisfactorily the true potential K ( r ) .  Let us recall that 
this choice unambiguously defines co, and therefore we know the behaviour of the 
potential near the origin. 

In order to study more precisely the relative deviation of these equivalent potentials, 
numerical tests are required. A first series of tests was performed by Sabatier and 
Quyen Van Phu (1971, see also Chadan and Sabatier (1977)), who compared some 
possible potentials V,(r) with the corresponding V(r, p )  generated by the inverse 
method at different energies. We made another series of similar tests, in a more precise 
and complete way (Coudray 1977, 1979), so as to connect the characteristics of the 
potentials V(r, p )  with the internal parameters of V,(r). However, no potential V(r, a )  
had been computed for values of a different from p. To verify that the ‘best’ potential 
was indeed V(r, p )  we have explicitly calculated some of its equivalent potentials 

We shall recall here two computational results which summarise very well most of 
our observations. They deal with the same initial Gaussian potential VL(r)= 
- Vo e x p [ - ( r / ~ ) ~ ] ,  with Vo = 14 MeV and p = 3.5 fermi. We have calculated the set of 
phase-shifts produced by this potential in the scattering of a neutron of energy Elab upon 
an a particle. In the centre-of-mass system, the energy EcM is written ECM = $??lab, and 
if M is the nucleon mass, the reduced mass p is equal to $M. 

When the Newton-Sabatier method is applied, and V(r, p )  is computed, the result is 
very sensitive to the chosen energy. Figure 1 is a comparison between V,(r) and V(r, p )  
for El& = 10, 30 and 400 MeV. For the lowest of these energies, the reproduction of 
the initial potential is relatively bad: the calculated potential oscillates around V, ( r ) ,  
and if this last potential was unknown, it would be difficult to deduce it from V(r, p) .  At 
the energy of 30MeV, the agreement is better: the only appreciable discrepancy 
between the initial potential and the calculated one takes place for values of r less than 
2 fermi, and is easily related to the divergent expression of V(r, p )  near the origin (cf 
formula 2). For the third of the chosen energies, Elab = 400 MeV, this discrepancy is 

V(r, a ) .  
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r l f m i  

Figure 1. Results of the Newton-Sabatier method: a = p. ~ vi(,) = -14 e-(r/3.5)2 

- _ _ _  Elah  = 10 MeV 
_ . _ . _  

EIab = 400 MeV _ _ _ _ _ _  
r is in fermi. 

further reduced, and as soon as r becomes larger than 1 fermi, the agreement between 
V,(r) and V(r, p )  is excellent. 

Now let us compute V(r, (U) at this last energy of 400 MeV, for which V(r, p )  
reproduces the initial potential fairly well. For a = 0.9p, we obtain the results shown in 
figure 2. The previous agreement is destroyed, and the computation leads to a strongly 
oscillating a:rve. Its oscillations are not limited to the asymptotic region, where 
theoretical considerations provided for them: they take place in the whole of the 
domain of variations of r. Their amplitude is relatively large; however, their average 
value seems to coincide with the initial potential. If other values of cr are tested, they 
lead to similar oscillating curves (Coudray 1979). 

These two examples illustrate the main characteristics of the potentials generated by 
the method. They show that the choice of V(r, p )  seems to be the best one in nuclear 
physics, and that, for a given initial potential V(r) ,  the higher energies give rise to the 
best fits. A more complete description of the potentials V(r,p), including their 
dependence on the shape and the parameters of the initial potential, may be found in 
Coudray (1979). The results given here are generalised and, more precisely, the notion 
of ‘critical energy’ is introduced: a progressive decrease of the energy leads successively 
to a good reproduction of the initial potential, then to oscillations indicating the 
neighbourhood of this critical energy, and at last to the failure of the method. For the 
example chosen here, this critical energy may be approximately located around 
10 MeV. 

It is worthy of notice that, independently of our work, another calculation of V(r, p )  
was performed with the help of the same techniques (Pelosi et a1 1978); it was a direct 
attempt to explain in terms of potentials the experimental results of the T-N diffusion. 



O n  transparent potentials 2941 
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Figure 2. Results of the Newton-Sabatier method: a = 0.90. ~ Vi(r) = 
- 14 e-(r/3,5)2, - - - - Elab = 400 MeV: calculated V(r, a ) .  r is in fermi. 

This computation led to strongly oscillating potentials. In this calculation, however, the 
origin of the observed oscillations is not easy to identify, which may be due to either the 
method itself, or the small number of experimental phase-shifts. Also, it was shown by 
Reignier (1979) that, in the class of potentials possessing a first absolute moment, any 
exact method of inversion with a finite number of phase-shifts leads always to potentials 
which own oscillating tails. 

The influence of the number of phase-shifts introduced into the computation can be 
numerically studied in the franc of the Newton-Sabatier method. Choosing again our 
Gaussian potential, at the energy Elab = 400 MeV, we were sure that the eventual 
oscillations could not be due to the method itself: at this energy, when the number N of 
phase-shifts is sufficiently large ( L  = 301, the computed potential V ( r ,  p ) ,  as shown in 
figure 2, possesses no visible oscillation. We successively reduced this number L to the 
values 20, 15, 10, 5, 3 and 1, obviously, always choosing the first phase-shifts. Our 
results, shown in figure 3, indicate that in any case the truncation of the series of 
phase-shifts leads to oscillations, situated within the whole domain of variations of r. 
When the truncation is very premature ( L  = 1 ,3 ,  5 ) ,  most of the oscillations seem to 
admit the zero potential as an average value. When supplementary phase-shifts are 
added ( L  = 10, 15,20), the oscillations centre progressively on the initial potential, 
until L becomes large enough (L = 30) to lead to a non-oscillating curve. 

All the potentials drawn in figure 3 are quasi-transparent. Their first L phase-shifts 
are identical to those of V i ( r ) .  They all oscillate, and the oscillations obtained by Pelosi 
et a1 (1978) may be due to the same phenomena. 

The different numerical examples we have recalled here are in agreement with 
previous theoretical results which provided for oscillations in the asymptotic region. 
However, we observe oscillations on the whole domain of definition of the potential. Is 
it then possible to understand the origin of these oscillations? In other words, can we 
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Figure 3. Influence of the number of phase-shifts in the Newton-Sabatier method. 
~ ~ ( r ) = - 1 4 e - " ' 3 ~ 5 ' ~ ,  _ _ _ _  Elab = 400 MeV: calculated potential V(r, p )  

with the first L phase-shifts. I is in fermi. 

write a possible expression for a potential equivalent to another one, or for a quasi- 
transparent potential? In what follows, we try to give an approximate answer to this 
question. 

3. Obtainment of potentials transparent or quasi-transparent in the Born 
approximation 

3.1. Introduction of the Born approximation 

A particularly interesting approximative study of the previous problem may be done in 
the frame of the Born approximation. Within this approximation, the phase-shift 
becomes a linear function of the potential: 

sin SI, = -y jam j ?  ( k r )  V ( r ) r 2  dr.  (3) 
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In this formula, j l ( r )  is the regular spherical Bessel function of order 1. The linearity of 
sin SIB implies that the difference between two equivalent potentials at a given energy is 
a potential for which all phase-shifts vanish at this energy, a transparent potential by 
definition. So the search for equivalent potentials reduces to the search for transparent 
potentials. If we are able to exhibit transparent potentials, the addition of one of them 
to any potential will provide a potential equivalent to this last one. 

How can a transparent potential be defined in the Born approximation? For such a 
potential VT(r) every phase-shift vanishes, so that 

lom j :  (kr)  VT(r)r2 dr = 0 

lom J:+: (x )VT(X)X dx = O  

for any integer 1s 0 (4) 

or, after introducing the reduced variable x = kr, the reduced potential VT(X)  = 
(2@/h2k2) V T ( x / k )  and the ordinary Bessel functions J l + i ( x )  = ( ~ X / T ) ” * ~ [ ( X ) :  

for any integer 1 a 0. ( 5 )  

So we have to look for a function VT(x) orthogonal on (0, +OO) to every function 
x J ?+; (x 1. 

3.2. Potentials transparent in the Born approximation 

In order to derive a possible expression for VT(x), we worked in steps. First we looked 
for VT(X) amongst the functions VT(X) such that x’VT(X) is square-integrable (with y 
real). Although we were then working in a reduced class, we enjoyed the advantage 
that these functions could be decomposed with respect to the set of eigenfunctions of 
differential self-adjoint operators (Dunford and Schwartz 1964). With the help of this 
last technique, we were led to the following expression for VT(X)  (Coudray 1979): 

VT(X) = [ J o ( K x ) I / X  K b 2  (6) 
which corresponds to a very narrow class of functions. However, we are now in 
possession of an analytic expression for VT(x), and it is easy to generalise it. A first 
extension may be the class of functions which are products of a power of x by a Bessel 
function. The introduction of such functions into equation ( 5 )  provides 

VT(X) = X ” - l J , ( C X )  ( 7 a )  
1 1 - z < v < z  

c > 2 .  

But inequality (7b)-which is obtained by imposing on VT(x) the usual conditions 
for the applicability of scattering theory-cannot allow an asymptotic decrease of VT(x) 
faster than x-*+‘, E > 0. Also, a recent result of Reignier (1979) shows that a potential 
transparent in the Born approximation may decrease more rapidly than any prescribed 
negative power of x .  This contradiction may be removed if we extend a second time the 
class of the required functions, by considering products of powers of x by several Bessel 
functions: 

~ T ( x ) = x ~ J ~ ~ ( c ~ x ) J , ~ ( c ~ x )  . Jv,,,(cmx). (8) 

This last expression allows an arbitrary asymptotic power decrease of VT(X) ,  each 
Bessel function reducing it by an amount of i. 
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Let us discuss the possibility for VT(x)  as defined by equation (8) to be transparent in 
the Born approximation-this discussion will include the two previous particular cases. 
We restrict our discussion to real potentials, i.e. to real parameters s, vi and cia The 
condition ( 5 )  reads 

11 =lo d x x S + 1 [ J ~ + : ( ~ ) ] 2 J , l ( ~ 1 ~ ) J , , ( ~ ~ ~ )  . . . J,,(cmx) = O  

The convergence of 11 must be ensured, both in the vicinity of the origin, and for large 
values of x. This leads to the double condition 

m 

for any integer 1 0. 

(9) 

S-t3+Vl+V2+.  . . + V , > o  (10) 

s < m/2. (11) 
The value of I[ is known: the simple change of functions (Bateman 1953 I) 

J , ( X ) = ( X / ~ ) ~ O F ~ ( - ; ~ + ~ ;  -x2/4) (12) 
converts I/ into a tabulated integral (Exton 1978): 

(4cm -21-3-s -v l - . . . -v ,  
( C l ) ” l ( C 2 ) ” * .  . . (C,)”” 11 = - r2(i +q)r(vl + 1) . . . r(v,n + 1)  21+ 1 + V I  +...+U_ 

r ( v m + i ) r ( 2 i + 3 + s + v l + v 2 + .  . .+vm) 
r [ 1 + 2 + 4 ( ~ + ~ ~ + ~ ~ + .  . . + V m ) ] r [ - 3 - ~ + ~ ( v m - ~ - V v I - v 2 - .  . . -vm-l)]  

X 

x FS”” [ I  +5+& + v1+ v2 + * . . + v m ) ,  1 +5 
+ ; ( s - v , ~ v l + V 2 + . . , + Y m - 1 ) ; 1 + q , 1 + ~ , v l + 1 , . .  3 * 

. . . ,  vm-1+ 1; l / ck?  1/ck? ( C 1 / c m I 2 ,  * 9 ( c m - l / c m ) ’ I  (13) 
where FSmm+’) is the Lauricella function of ( m  + 1)  variables, a function which reduces to 
F4 if m = li. As soon as this function may be defined as a multiple series, it cannot 
become singular, and the cancellation of 11 for any integer 12 @ may occur if the 
denominator grows towards infinity. This happens whenever the relation 

- ; - l - i (vO-s)=-n 

s=v0-1 -21+2n  (14) 

zlo=vm-(vl+vz+.  . . + v m - l )  (15) 

or 

is fulfilled. In the equations, v o  is defined as 

and n is any integer SO. Given vo, and given a value of n, it is always possible to choose s 
by imposing 1 = 0 in equation (14). This last equation is then automatically fulfilled for 
any integer 1 > 0. So, given vo, it is easy to annihilate 11 for any integer 1 3  0 by setting 

s = vo- 1 + 2P1, (16) 

n being any integer 2 0 .  

t The quoted reference provides (c,/4)- 2 1 - 3 - s - ” l -  - Y m  instead of -Ym . However, as the 
resulting formula does not reduce for m = 0 and m = 1 to the well known formulae (see for instance Bailey 
(1934) and Bateman (1953 11)), we have slightly modified it. Our results are independent of this modification. 
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If positive parameters ci are assumed?, Fkm+” may be defined as a multiple series 

2+C1+C2+. . .+cm-1<cm.  (17) 

since the following inequality is fulfilled: 

Then equations (15) and (16), together with conditions (lo), (11) and (17), define a class 
of functions Y T ( x ) :  

(18) 
for which every integral 11 vanishes. But we require more on “IrT(x): we want to be able 
to apply scattering theory to them: and, amongst the previous class, this leads us to 
select functions such that 

uo+2n-1 
“IrT(X) = x J u , ( C l x ) J v , ( C Z x )  - Jv,,,(CmX) 

I“y;(x)l <Ax-’-‘‘ 

I “IrT(x)I < Bx -’+‘‘I 

when x -* CO 

when x -* 0 

where 7 and 7’ are positive arbitrary constants. These two conditions limit the domain 
of variations of the parameters n and vi according to the inequality 

-(n +$)< v, < ( v l  + v 2 + .  . . + v , - ~ ) +  m/2-.2n (19) 
which involves conditions (10) and (11). So, from now on, our potentials will be defined 
by equations (15) and (18), and submitted to conditions (17) and (19). 

A graphical study of inequality (19) may be done: see figure 4. Let us suppose the 
parameters vi to be known, and let us look for the possible values for n. In figure 4, all 
these values are the abscissae of points contained either inside the triangle ABC, or on 
the segment AC. The straight line BC possesses a constant slope, but its position is 
related to the value of q = m/2 + v 1  + . . . + Y , - ~ .  The abscissa of B, nB = q I-?, cor- 
responds to the upper bound for n, a bound which cannot be reached. So n belongs to 
the set (0, 1 , 2 .  . . N } ,  where N is the largest integer less than n g .  

However, the double inequality (19) does not involve very restrictive conditions on 
YT(x). Indeed, near the origin, the potential behaves like x * ( ‘ ’ + ~ ~ ) - ~ ,  i.e. may have any 
prescribed behaviour compatible with quantum scattering theory. On the other hand, 
the potential becomes asymptotically 

1 

1 1 1 1 1 1 

(20) 
cos(c1x -zv17T-;i7T) cos(c2x -zvz?T--a7T). __.I * * cos:c,x-zv,.rr--;j7T) 

1-2n+m/2-v0 
X 

“Irdx) 

and it may decrease more rapidly than any given negative power of x : even when the 
sum (n + v,) is given, the quantity 1 + q - n = 1 + q - (n + v,) v, remaining in the 
exponent of x may be chosen arbitrarily large. So every decreasing power of x 
compatible with scattering theory may asymptotically be reached by some YT(x), 

Obviously, the expressions (6) and (7) correspond to particular cases of the general 
potential (18), and may be derived with the same techniques. However, as said before, 
we were led to the expression (6) by another method, and we were able to show that the 
limit value K = 2 could be included in the range of the parameter K (Coudray 1979). It 
was therefore interesting to look for the possibility for the parameter c of equation (7) 

i According to the formula (Bateman 1953 111) 

Jv(eimnx) = eimvnJV(x) 

the choice of some parameters -.ci instead of +ci  leads to the same potential VT(x), to within a multiplicative 
phase. 
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Figure 4. Possible values of n. 9 = bm + ( v l  + v2+. . . + Y , , , - ~ ) .  

to be equal to 2, and, more generally, for c, to reach the sum 2 + c1 + . . . + In the 
Appendix, use is made of Lebesgue’s theorem to show that this limit value may be 
included in the range of c,, so that inequality (17) is to be replaced by 

In particular, if m = 1, the value c = 2 is allowed. 

3.3. Link with the Newton-Sabatier method 

Let us now come back to our starting point, i.e. to the Newton-Sabatier method. It has 
been shown that an exact transparent potential is generated by this method, that it is 
unique (Redmond 1964), and that it behaves at infinity like [cos(2x - -/r/4)]/x3” (cf 
formula (1)) (Sabatier 1966). If we compare this asymptotic behaviour with equation 
(20), we observe that it may be that of Y ; ( x ) = [ J o ( 2 x ) ] / x ,  one of the transparent 
potentials we have defined, corresponding to m = 1, n = v = 0 and c = 2. Furthermore, 
Y ; ( x )  has the same behaviour in the vicinity of the origin as those potentials obtained 
via the Newton-Sabatier method. These two similarities lead us to think that p T ( x )  
may be the Born approximation of the exact transparent potential of this method. 

In order to verify this assumption, we shall use the numerical results shown in figure 
2. Let us suppose the Born approximation to be valid. Then the property of linearity of 
the phase-shifts implies that the computed potential may be the sum of the initial 
potential Vi(r) and, if our assumption concerning 7 f ;  is valid, of any multiple of 

( 2 2 )  

v!: ( r )  = ECMY; ( k r ) .  so 

V”(r, a )  =ECMV(kr, a )  = K(r)+KECMClrOT(kr). 
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As the Gaussian potential decreases more rapidly than Y ; ( k r ) ,  asymptotically VB(r, a )  
reduces to the multiple of the transparent potential and 

cos(2kr - T/4) 
f . . . .  

(kr)3’2 V”(r, a )  - K E ~ ~  
r -cc  

But this is to be identified with the asymptotic behaviour of V(r, cy.), as given by 
equation (1). Now K is defined unambiguously as 

K = -2(a - P ) .  (24) 

In figure 5 are drawn the potential V(r, a )  obtained previously from the set of 
phase-shifts { S I }  corresponding to Vi(r), and the potential VB(r, a )  defined by equations 
(22) and (24). A very good agreement holds between these two potentials, particularly 
near the origin and in the tail region. The slight discrepancy observed for the 
intermediate values of r may be due to the fact that the true transparent potential 
involved in the Newton-Sabatier method is probably not exactly equal to its Born 
approximation. 

Figure 5. Comparison between V(r, a )  and VB(r, a )  = Vj(r ) -2(a  -P)EcM(Jo(2kr)/kr). 
vi(r) = -14 e-(r’3.s)2, _I___ V(r, a ) ,  VB(r, a ) .  r is in fermi. 

Nevertheless, we can conclude that our class of transparent potentials contains the 
Born approximation of the Newton-Sabatier transparent potential. This last result 
allows the best understanding of reasons for the non-uniqueness of the solution of the 
studied method. Furthermore, it allows us to predict analogous lacks of uniqueness in 
any possible inverse method based only on the knowledge of the phase-shifts of a 
potential at a given energy. 
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3.4. Potentials quasi-transparent in the Born approximation 

Techniques similar to those of Q 3.2 may be used to determine a class of quasi- 
transparent potentials belonging to the same set of functions. For such potentials, all 
phase-shifts vanish at and after some wave L. So, in the Born approximation, we must 
impose the cancellation of 11 for any integer 13 L. This requires the fulfilment of the 
condition 

and the corresponding quasi-transparent potentials can be written 

with parameters submitted to the following conditions: 

L -$< I/, < ( v l  + . . . + V m - 1 )  + m/2 + 2L 
2 + C l + .  . . + c m - l s c m .  

These last inequalities may be deduced in a similar manner to the conditions concerning 
the transparent potentials. Like them, they are not very restrictive, and allow VFrL(x) an 
arbitrary asymptotic power decrease. 

To conclude this section, we want to emphasise the fact that all the potentials we 
have obtained are energy-dependent: the variable x is the reduced variable and the 
formula 

V;,(r) = EcMvT,-(kr) (28) 
shows this dependence. 

4. Use of the total Born scattering amplitude 

Some general characteristics of the potentials transparent in the Born approximation 
may be deduced from the introduction of the total Born scattering amplitude. With its 
help, the condition of transparency in the Born approximation may be written (Sabatier 
1973, Reignier 1979) in a form different from equation ( 5 ) .  Let us write the total Born 
scattering amplitude corresponding to a potential V ( r )  at the energy EcM = h 2 k 2 / 2 p  : 

m 

hB(q)  = --% lo r sin qr V ( r )  dr. 

This is the sine Fourier transform of the function rV(r).  In this last formula, the variable 
q is the length of the momentum transfer q = k - k', k being the wavevector of the 
incident particle, and k' a vector of the same length, but parallel to the direction of 
observation. A potential will be transparent if hB(q)  vanishes for every physical value of 
q, i.e. for q E [O, 2 k ] .  

This definition of transparency allows us to derive very general features of the 
transparent potentials. Let us state them. 

Froperty 1. Every potential transparent in the Born approximation at a given energy 
is transparent in the same approximation at any lower energy. 

This result is obvious. If h ( q )  = 0 for 0 s q == 2k, then h(q)  = 0 for 0 G q G 2kl for 
any kl  < k. 
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Property 2. If a potential VT(r) is transparent in the Born approximation at a given 
energy E, and if y is a real positive number, the potential VT( yr)  is transparent in the 
same approximation at the energy y2E. 

This property is easily shown. The Born scattering amplitude corresponding to 
V,(r) = VT(yr), as defined in property 2, may be written 

qr’ 
m 

sin - VT(r’)r’ dr’ 

where hB(q) is the Born scattering amplitude corresponding to VT(r). As this last 
quantity vanishes for q E [ 0 , 2 k ] ,  vanishes for q E [ 0 , 2 k y ] ,  so V,(r) is trans- 
parent at the energy y2E. 

Now let us suppose y > 1; V,(r) is transparent at the energy E, = y2E, E, >E, so 
property 1 implies that V,(r) is still transparent at the energy E. On the other hand, for 
y < 1, V,(r) is generally not transparent at the energy E. Consequently, we may write 
the important following property. 

Property 3. Starting from a given potential VT(r) transparent in the Born approxi- 
mation at the energy E, one may generate a class of potentials possessing the same 
property by the substitution of yr for r in the expression of VT(r), y being any real 
number greater than one. 

This last property may be used to explain the origin of inequality (21). This 
inequality, obtained by other means, indicates that the parameter cm is limited by a 
lower bound. Let us apply property 3 to the potential VT(r) = ECM‘VT(kr), where ‘V&) 
is given by (18), with cm = 2 + c l + c a + .  . .cm-1. VT(r) is transparent at the energy 
ECM = fi2k2/2pL. For any y > 1, the potential VT(yr) is transparent at the same energy. 
Now its parameters are yc1, ycz, .  . . , yc,, such that 

Therefore, for every potential VT(yr), inequality (21) holds. On the other hand, for 
y < 1, VT(yr) is generally not transparent at the energy ECM, and the sense of the 
inequality cannot be reversed. 

5. Bounds for the exact scattering amplitude of our transparent potentials 

We are now in possession of a relatively wide class of potentials transparent in the Born 
approximation. However, one last question remains unsolved. What is the validity of 
our results? In other words, is the Born approximation a ‘good’ approximation when 
the energy is fixed? In this section, we shall give elements for an answer to this question. 

The validity of the Born approximation at fixed energy according to the values of the 
angular momentum was studied by Martin (1964) for potentials V(r )  such that 

(i) V(r )  possesses an asymptotic constant sign; 
(ii) the integral J: r /  V(r)l dr does exist. 
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Although the first of these conditions is never fulfilled by our potentials VT(r), and 
the second one is generally violated, it is still possible to adapt a large part of Martin’s 
work. In order to do this, we define the exact scattering amplitude corresponding to a 
transparent potential VT(~) ,  and its Born approximation: 

where ;(kr) = krjl(kr), &(r) = ( 2 p / h 2 ) ,  V T ( ~ )  = k2vT(kr) and u ~ ( r )  is the regular 
solution of the radial Schrodinger equation for the Ith partial wave. The validity of the 
Born approximation is proved if, for any given E > 0, the quantity RI = I fl - f ? l / l  f? I is 
less than E as soon as 1 is greater than some I(€) .  For our transparent potentials 
VT(r), f? vanishes always identically, and we cannot verify such an assertion. However, 
RI may be written 

after introducing the Born scattering amplitude corresponding to I VT(r)J, 

dr,?(kr)lWr)l, (32) 
f Y L - 1  1 “  

k o  

and the study of RI may be done in two steps (Martin 1964). With our potentials, the 
quantity RI, may be studied and bounded. On the other hand, RI, cannot be defined. In 
order to improve somewhat the bound on RI,, it is possible to introduce the difference 
11 fF’1- I f? 11, which reduces to I f7’1, and to bound it independently of RI,. This double 
study allows us to obtain a bound for I f l l  which decreases like a negative power of I, and 
which, furthermore, does not depend on the energy. 

5.1. Study Of RI, 
We shall adopt the techniques of Martin (1964). We first introduce 

We know that u I ( r )  is a solution of the integral equation 

In this equation, &: (kr) = kr h: (kr), hi’’ being the spherical Hankel function of the first 
kind, and kr, and kr, denote the smaller and greater respectively of kr and kr’. Let us 
recall that  UT(^) = k2vT(kr) is energy dependent. 

So the following bound holds: 
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and in order to bound the quantity l;(kr<)/$l)(kr,)l, we use the two inequalities (Martin 
1964) 

Let us introduce a E [0, 11; we deduce from the last inequalities 

li(r)@)(rf)1 s ~ ' ( r r ' ) ~ / ~ ( 2 1 +  1) -a~2(c ;11~3+c~)1 -a  C ' > O .  (37) 
Following Martin, we substitute this bound in equation (35). Then we multiply this 
equation by ra/'UT(r), and integrate over r. We obtain 

.w 

as long as every integral involved converges. Let us first consider A(a, k): 
m 

A b ,  k) = lo r"lUT(r)l dr  

W 

= k 2  lo r"l"IrT(kr)l dr 

an expression which shows that k"-'A(a, k) = A ( a )  does not depend on k. The integral 
A(a,  k) exists if a is chosen such that (see equations (15) and (18)) 

a c m/2 - yo- 2n 

a > -2(u,,, + n). 

(40a 1 
(40b) 

If these two conditions are not compatible (compare with inequality (19)), we shall 
not be able to give any bound on I f / / .  Let us suppose that this is not the case, and that a 
value of a does exist which fulfils these two inequalities. Then let us introduce 

An easy estimation shows that 11 converges too. We can write 
.m 

Il[l -C'(C~1"''  1) l-= ( 2 1 + 1 ) - " / 2 A ( n ) ] ~ ~  ~~(kr )~ ra ' 2~UT(r ) l  dr  
0 

or 

t This inequality is not demonstrated in Martin's course. We have tested it numerically (see Coudray 1979). 
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where we have set 

xa(l)"'(c;11'3.c'' ) (21 + l)'-"/*A(a). 

1 
For large values of 1, we have 

( C ; 1 1 / 3 + C ; ) 1 - a ( 2 1 +  1 ) - a / 2  = 0 [ j 1 / 3 - 5 a / 6  

(43) 

and this quantity is a decreasing function of 1 as soon as 

a >$. (44) 
We shall hereafter impose this condition on a, i.e. limit the domain of variations of a to 
the interval 13, + 1 ] .  If in this domain a value of a allows the existence of A(a) ,  then 
there exists some I ,  such that 

6) Xa(lm) s 1 ,  
(ii) for 1 > I,, Xa(lm)  is a strictly decreasing function of 1. It is noteworthy that the 

Then for any 1 > I,, one has 
value of I ,  does not depend on the energy. 

Let us now come back to [fila From (33), (35) and (45), we obtain 

an inequality which becomes, with the help of the Schwarz inequality, 

Also, for any given E > Q  the quantity RI, = lfil/lf?'l is less than E as soon as 1 > lo, lo 
being greater than 1, and defined by 

(48) Xa(lO) = E [ 1  - .X,(l ,  + l ) ] .  

Now we show that I f? ' /  itself can be bounded by a decreasing function of 1. 

5.2. Study of If?'/ 
In reduced variables I f ? ' ]  may be written 

I f ? ' /  = k [!dkr)l*IV~(kr)l dr = [ ~ ( x ) l ' l ~ ~ ( x ) l  dx (49) 
0 Is 

and is seen to be independent of the chosen energy. As before, this is due to the fact that 
VT(r) depends on the energy. Obviously, this has the consequence that, if we find a 
bound for IfF'I, this bound will only depend on 1. We can write 
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Let us first study f: (R). For any given q > 0, one may find R i ( q )  such that, for any 
x > R i ( q ) ,  one has (Bateman 1953 111) 

(indeed, the difference is a multiple of [sin(cix - vi7r/2 - 7 ~ / 4 ) ] / ( c ~ x ) ~ / ~ ) .  Let us choose 
R = maxi{Ri(q)}: 

1 1 uo+2n . + [JUi(cjx) - ( ~ / T c ~ x ) ’ / ’  COS(C~X -3vI.7~ - S T ) ] ] X  

As the cos is always bounded by one, we have 

This last integral is convergent as soon as 

21 + 2  >3- vo-2n  > 0. (52 )  

It is easy to choose 1 > l2  defined by 12 = -5- vo- 2n. On the other hand, the inequality 
concerning v o  and n is not alwaysfulfilled (compare with inequality (19 ) ) .  We shall limit 
ourselves to the potentials satisfying condition (52 ) .  In this last case, the value of the 
integral appearing in equation (51) is known (Bateman 1953 V), and Stirling’s formula 
allows one to write, for 1 large enough (1  > l ; ) ,  

If? (R)j < [(2/.rrci)1’2](l i- q ) c 2 E 2 n + v o - 1 / 2  c2>0 (53) 
i 

and as soon as 1 is greater than 12,  this last bound is a decreasing function of 1. 
Let us now come to f: (R). The function 1x2VT(x)I is bounded near the origin (in 

order to apply scattering theory to VT(x)). As VT(x) is a continuous function of x, one 
can write 

IX2VT(X) I  S M  on the interval [0, RI 

For any given l > 0, it is possible to find 1; (R, 4‘) such that, for any 13 l $ ,  the following 
inequality holds: 

Let us now choose 1 S L  -- max(12, lk ,  1:) .  Then 
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and, for any given [ ' > O ,  one can find L' such that, for any 1 2 L f ,  the following 
inequality holds: 

R21c1 

(21 + 1)[(21+ 1)!!12 

Then, for any 1 3 Lo = max{L, Lf} ,  we can write 

and for any given E'  > 0, I f ? ' [  is less than E ' ,  as soon as 13 max{Lo, LI}, L1 being defined 
by 

I (57) - E f .  
C ; L - 1 / 2 ~ v , + 2 n  - 

5.3. Compatibility of the bounds for RI, and f?'! 
In the last two subsections, bounds for RI, and I fy'l have been independently derived. 
An interesting point is to determine whether or not the two categories of potentials for 
which § 5.1 and 3 5.2 apply are compatible. In both cases, a condition on 1 was found: 
1 > Eo in § 5.1 and I > max{Lo, L1} in 3 5.2 (see the text for the definitions of lo, Lo and 
L1). The compatibility of these conditions is obvious for 1 large enough. 

The quantity RI, is bounded if a value of a < 1 does exist such that the following 
inequalities hold: 

?<a 2 <m/2-v0 -2n  

v m >  - n  -a /2 .  

One may easily be convinced that any potential answering to these conditions fulfils 
inequality (19). However, the converse is not true, and equations (58) and (59) are 
more restrictive than equation (19). In particular, equation (58) implies 

vo<m/2-2n-+.  (60) 

On the other hand, we have bounded I fy'l, for 1 large enough, for the values of vo 
such that 

(61) 1 vo < 5 -  2n. 

Except for m = 1, this last condition is stronger than (60); however, the two 
conditions are never mutually exclusive. 

To conclude, it is always possible to define a subclass amongst the class of 
transparent potentials defined by equation (18) and which obey condition (19). This 
subclass fulfils the inequalities 

Y O  < &,- 2n 

vo < i- 2n 

for m = 1 

for m > 1 

and Y, must be such that it is possible to find a value of a ~ ] & 1 [  such that 
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For these potentials, RI, and If?’[ may at once be bounded for 1 large enough, and their 
bounds are found to be independent of the energy. 

6. Conclusion 

In this paper we have exhibited a relatively wide class of potentials which are either 
transparent or quasi-transparent at any energy in the Born approximation. All of them 
are energy dependent. 

Their existence shows the lack of uniqueness of the solution of most inverse 
problems at fixed energy, only based upon the knowledge of the Born phase-shifts. 
Indeed, if a theoretical solution is sought for, the number of phase-shifts involved in the 
problem may be infinite, and a transparent potential may appear. If a numerical study is 
performed, the set of phase-shifts involved in the calculation is necessarily finite, and 
the solution may include one of the quasi-transparent potentials we have found. Unless 
an inner mechanism of the method prevents such transparent or quasi-transparent 
potentials from appearing-as is the case for the transparent potential in the Newton- 
Sabatier method-oscillations will generally be observed in the solution of the inverse 
problem. 

This result does not contradict the result of Loeffel(l968): in the class of potentials 
which decrease asymptotically faster than any power of the variable, no transparent 
potential can be found. 

We have not been able to obtain exact transparent or quasi-transparent potentials. 
However, the example of the Newton-Sabatier transparent potential, as well as the 
study of the bounds of the scattering amplitude of our transparent potentials, lead us to 
believe that the Born approximation is a ‘good’ approximation for large values of the 
angular momentum. As is well known, the large values of I correspond to the large 
values of the variable r. So, our conclusion is that, at least asymptotically, the solution of 
an exact inverse problem is generally non-unique, and that this lack of uniqueness is 
probably due to the existence of exact transparent potentials, the asymptotic decrease 
of which being one of those of the transparent potkntials we have obtained in the Born 
approximation. 
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Appendix 

We want to study the integral 

JO 

with vo defined by 

v 0 = v m - ( v 1 + .  . . + v m - l ) .  
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We suppose that the parameters c, fulfil condition (19). Then we know that, if cm is 
such that 

cm>2+c1+c2+.  1 .+cm-l,  (A3) 
Il vanishes identically for any integer 1. We shall use Lebesgue’s theorem to show the 
continuity of It when (A3) holds and cm goes to the limiting value 

cm =2+c1+c2+.  . .+cm-l.  (A41 

[ J I + ~ ( x ) I ~ J ~ , ( c ~ x ) J , , ( c ~ x )  * * Jv,(cmx)I. 

Let us introduce the function F(x,  c , )  defined by 
uo+Zn F(x,  ci) = IX 

For a given set of c1, CZ, . . . , cm-1, F(x,  c,) is a continuous function of cm. Furthermore, 
it can be bounded independently of cm by a summable function G(x, c1, c2 ,  . . . , c ~ - ~ ) .  
This last function may be defined by cutting the integration domain of It into three 
regions: 

(i) near the origin 
u , , - ~  ( )umXvm+2n+Zf+1 G(x, c1, * * * , cm-l )  = c;1c;z.. . cm-1 cox 

where co is the value of cm which maximises IJ,,(cmx)/ in this region; 
(ii) on a finite interval 

G(x, C I ,  CZ, . , c m -  1) =Milxuot2nCJt+:(.~)12J~l(~i~) . - J u , - l ( ~ m - - l ~ ) I  
where Ml = max,m,xIJum(cmx)l on this interval; 

G(x, c1, c2,. . . , cm- l )  = ( c l . .  . C , - J ~ / ~ ( ~ + C ~ + .  . .+cm-1)-1’2xY0+2n-m/2-1 

is summable on the half-line x > 0. 

may include the limit (A4) in the domain of variations of the parameters cI. 

(iii) in the asymptotic region common to the (m +2) Bessel functions: 

In each of its three domains of definition, C(x, c1, CZ, . . . , cm- l )  is summable. So G 

Then the conditions for the applicability of Lebesgue’s theorem are fulfilled, and we 
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